

Storage of Vitrified HLW Savannah River Site

We do the right thing.

Brenda Green Savannah River Remediation

Savannah River Site Citizens Advisory Board November 18, 2014

Projected Canister Production Rates

- Canister Production Rate Based on System Plan 19
 - FY15 156
 - FY16 136 with 4 month melter outage
 - FY17 168
 - FY18 160 with 4 month outage for transition to SWPF operation
 - FY19 276
 - Beyond 276
- Canisters Produced To Date (Sept 30, 2014) 3,877
- Estimated Total Canister Production 8,582
- Canisters Produced (% of Total)
 45.2
- Canister Production Exceeds Canister Storage in FY19

Supplemental Canister Storage

We do the right thing.

- No 3rd Glass Waste Storage Building (GWSB) (~ \$130 million)
 - Large upfront cost & future D&D cost
- Glass Waste Storage Project (GWSP) Being Developed to Provide
 - Supplemental Canister Storage in above ground storage containers similar to commercial Spent Nuclear Fuel (SNF) storage
 - Loading Station for Shielded Canister Transporter (SCT) transfer of canister to storage containers
 - Storage pad for storage containers
 - Storage containers procured to support canister production
 - Allow future construction of canister transportation capabilities
- GWSP Deferred Until FY18 Line Item
- Interim Canister Storage Required
 - Double Stack of Canisters in GWSB1 increases capacity from 2,254 to 4,508

3

Interim Canister Storage - Double Stack (ICS-DS) **Concept for GWSB1**

- Two canisters per location (vs. one can per location,
- Lower canister on support on vault floor (vs. cross bar support 3' off floor)
- Upper canister placed directly on top of lower canister
- Upper canister extends into operating deck floor, but remains below grade
- Shield plug redesigned for equivalent radiological protection

Glass Waste Storage Building 1 Vault

- Inside vault looking across rows of canister supports
- Inside canister storage location
 - Minimum Opening in floor is 27 inch ID
 - Cross Bar Assembly is 1 ½ inch x 3 inch galvanized carbon steel bars
 - Cross Bar Assembly~ 18 ft down with 30 inch OD
 - 2 sets of guides (3 tabs each) to guide canisters
 - Bottom guides sit 5 inches above cross bar assembly

Proposed Modifications

Impact of ICS-DS on Canister Storage Space

Technical Feasibility Summary

- Heat Model supports canisters produced to date and future sludge batch forecast
- Seismic/Structural calculations support adequate margin for static and seismic performance category and canister integrity
- Cutting tool technology exists
- Radiological calculations support acceptable dose rates during modification w/o emptying vault
- GWSB1 remains Underground Radioactive Material Area posting
- No safety basis or fire hazard concerns implementation actions only

Canister Storage Summary

- Technical Feasibility Evaluation Supports Double Stacking GWSB1
- Use Interim Canister Storage Double Stack to Bridge Canister Storage Gap
- Increases GWSB1 capacity to 4,508 canisters
- Provides adequate storage through FY26